News

Automatische Wahrsager

Sie verschaffen Zeit und bieten die Grundlage für rechtzeitiges Handeln: Frühwarnsysteme.

So koordiniert wie auf dieser Kreuzung der deutschen Großstadt Köln geht es nicht immer auf den Straßen zu. Logistik-Frühwarnsysteme helfen, Baustellen und Verkehrschaos zu meiden und die Lieferketten sicherzustellen. Foto: Jörg Greuel/Getty Images

Vorbereitung ist das Schlagwort effizienten Handelns. Weiß man um einen Stau, kann man ihn umfahren, droht eine Dürre, spart man Wasser. Corona traf die Welt unvorbereitet. Bis Mitte 2020 starben mehr als eine halbe Million Menschen an einer Covid-19-Infektion. Und die Frage wird laut: Warum gibt es für Pandemien kein funktionierendes Frühwarnsystem?

In anderen Zusammenhängen sind Frühwarnsysteme schon Standard. Am 26. Dezember 2004 bebte vor der Küste Nordsumatras der Meeresboden. Stärke 9,3 auf der Richterskala, eines der stärksten Seebeben der vergangenen hundert Jahre. Wo der Grund des Ozeans zitterte, türmte er Wellen auf, höher und höher peitschten sie der Insel und vielen weiteren Küsten des Indischen Ozeans entgegen. Vorbereitet war niemand. Mehr als 250.000 Menschen starben. Ein Konsortium unter Führung des Deutschen Geoforschungszentrums in Potsdam errichtete daraufhin ein Frühwarnsystem im Indischen Ozean. Ein Netz von Seismometern ortet Zentren von Erdbeben, Satelliten vermessen Bewegungen der Erdoberfläche via GPS. Würde das System jede Erschütterung berücksichtigen, gäbe es viele Fehlalarme. GPS-Bojen und Drucksensoren am Ozeanboden helfen, nach einem Beben jede Welle zu vermessen. Die Daten werden in einem Rechenzentrum gesammelt und mit Aufzeichnungen verglichen. Durch diese Informationsfülle entstehen Modelle, die binnen Minuten Auskunft geben über Geschwindigkeit, Richtung und Ausmaß eines möglichen Tsunamis – darüber, wie harmlos oder gefährlich er ist.

Analyse mittels maschinellen Lernens

Frühwarnsysteme helfen auch Unternehmen. Beispielsweise um sich auf Schwierigkeiten in der Lieferkette vorzubereiten. „Resilience360 Supply Watch“ heißt das System des deutschen Logistikunternehmens DHL. Das Programm definiert rund 140 Kategorien von Risiken, etwa finanzielle, umweltbezogene und soziale. Berichten Medien über Kriminalität in einer Region? Wie oft werden Mängel beanstandet? Wie sieht es mit den Beständen aus – genug auf Lager? Das DHL-System analysiert Daten aus bis zu 30 Millionen Online- und Social-Media-Beiträgen und stellt die Ergebnisse der Risikobewertung dem Kunden zur Verfügung. Welche relevant sind und welche Konsequenzen daraus folgen, wird stetig neu bewertet. Vom Programm selbst. Dabei hilft sogenanntes maschinelles Lernen (ML).

Lesen Sie den vollständigen Text im Porsche Consulting Magazin