
Quality

Managing Soft ware
Quality Holistically rather
than Fixing the Bugs
The framework for quality managers to enable
their organization to deliver high-quality soft ware

 Quality 02

Increasing digitalization in most industries has resulted in a
high demand for tailored support using quality management
for software. Porsche Consulting has developed a highly effec-
tive approach for its quality management system for software
that addresses the most relevant levers of improvement in
software development while specifically taking into account a
software’s synchronization with hardware development. This
holistic approach includes three sprints. A company-specif-
ic procedure model is developed and matched to a tailored

Introduction

Quality management system for software

 is a framework that enables an organization to
consistently deliver high-quality results in software

development.

The quality management system for software is the framework that enables an organization
to consistently deliver high-quality results in software development (figure 1). Quality man-
agement that supports software development and the integration of software and hardware
represents significant levers of improvement, as the increase in a product system’s complexity
is largely driven by software.

quality organization, which is in turn aligned with processes
supported by appropriate IT tools.

The business case is built on the potential of minimizing
debugging, currently accounting for more than 30 percent
of capacity in software development. The amount currently
used for management, documentation, and support can be
reduced to about 50 percent by means of a tailored and co-
ordinated approach to the quality management of software.

Figure 1. Definition of a management system for software quality

© Porsche Consulting

 Quality 03

Software may not always be visible, but errors related to its
use can easily have tangible and costly consequences. Irish
Rail’s signal failure in May 2019 or British Airways’ computer
breakdown at London Heathrow in 2017 are just two exam-
ples of numerous software errors costing millions of euros and
directly affecting the population.

According to a 2012 report by Capers Jones 2, a specialist in
software engineering, the amount of actual coding in software
development decreases as its quality increases. Coding en-
compasses only 18 percent of the development phase. Typi-
cally, almost 50 cents out of every Euro will go to finding and
fixing bugs. However, costs associated with fixing bugs are
often neither measured nor tracked systematically. The po-
tential of a systematic approach to software quality becomes
apparent which includes defect prevention, pretests, defect
removal as well as formal testing based on various methods.

The customer’s perception of products and services is chang-
ing rapidly. They expect any combination of hardware and
software to be easily operable, highly intuitive, and bug-free
from the outset. Software quality has become one of the
most critical success factors leading to customer satisfac-
tion. Porsche Consulting has developed an innovative frame-
work for quality management to assist their clients in meeting
these expectations.

A consistent, common understanding of the software sys-
tem’s architectural split is essential to effective quality man-
agement. Its architecture lays the foundation for applying
quality methods and processes as well as defining software
maturity. The latter’s inclusion in software quality manage-

Software quality management requires a systematic and holistic approach

Figure 2. Share of software projects that do not meet the conditions or requirements or are cancelled. 1

1 https://www.standishgroup.com/sample_research_files/DemoPRBR.pdf
2 https://www.ifpug.org/content/documents/Jones-SoftwareDefectOriginsAndRemovalMethodsDraft5.pdf

© Porsche Consulting

A report by the Standish Group 1 (figure 2) indicates that 71
percent of all software projects do not meet the general proj-
ect conditions. Only 29 percent are finished successfully,
while 52 percent exceed budgets and deadlines or do not ful-
fill requisite functionality. An additional 19 percent of projects
are cancelled.

ment requires evaluating maturity and considering the soft-
ware’s function, its technical structure and its procedural as-
pects. Maturity should not be understood as a constant state,
but rather as evolving dynamically from software develop-
ment and the product development process. It may therefore
be suitable to review maturity and specific criteria at well-de-
fined milestones during the project.

The relevance of a quality management system for software
is based on a series of particular challenges and key charac-
teristics:

 �Expanded use of software applications causes software
development to gain importance within the value chain.

 �Increasing device connectivity requires higher software
standards regarding interface communication architecture.

 �The growing complexity of software applications requires a
systematic approach to deliver high-quality results.
 �The properties and requirements of novel products with
regard to software cannot be accurately defined at the start
of product development.
 �Customers may not be able to articulate or quantify their
requirements regarding software or can only do so in a
subjective way.

of all software projects
do not meet the gener-
al project conditions.

of all software projects
exceed budgets and
deadlines or do not fulfill
requisite functionality.

of all software projects
are cancelled.

71% 52% 19%

A

C D

B

User Interface

ECU (electronic control unit) Surrounding technical system

Sensors, logic, and actuators

Assurance of direct interac-
tion between the user and the
technical system

Electronic modules process
input from sensor into output to
actuators according to logic

The system is subject to interfer-
ence by user and to adjustments
by actuators

Sensors detect current state, logic cap-
tures difference as compared to ideal
state, actuators adjust accordingly

 Quality 04

Software quality depends on programmers and thus on human
factors to a significant extent. Consequently, both customers
and programmers as well as the quality department’s orga-
nization are the main aspects in the design of a quality man-
agement system for software. In addition, software develop-
ment is characterized by continual updates and incremental
improvements during all phases of creation, production, and

Figure 3. Embedded software as an example for the application of quality management system for software

© Porsche Consulting

actual usage, which can help eliminate errors before custom-
ers are aware of them. Quality management for software is
demonstrated using the example of embedded software (fig-
ure 3), which is characterized by four aspects: the user inter-
face; sensors, logic, and actuators; the electronic control unit
(ECU); and the surrounding technical system. These aspects
can be extrapolated to fields beyond the automotive industry.

Software quality processes

QM SYSTEM

SOFTWARE CHARACTERISTICS AND ARCHITECTURE

Continuous improvement of quality management systems for software

Customer
demands and

fulfillment

Organizational quality structure Guidelines

• Software development
• Interfaces to PDP
• Defect elimination

• Requirements engineering
• Testing specifications (module testing, validation, and end-of-line)
• Standardized software modules/architecture
• Minimum criteria for software architecture

• �Software development
and testing

• Qualification and leadership

• Documentation
• IT system
• Norms and regulations

 Quality 05

 �Enabling an organization to deal with the exponential in-
crease in complexity of software functions
 �Dealing with the increasing necessity to integrate software
functions into the development process
 �Improving delivery time, customer acceptance, and flexibil-
ity to change
 �Providing a holistic approach for software development
throughout the life cycle

The framework, as depicted in figure 4, has been derived
from several standards (e.g., ISO9000 family, ASPICE, and
CMMI) and includes the following relevant aspects to ensure
high-quality software development:

Understanding customer demands is the key starting point.
Software quality processes and frameworks offer a systematic
approach to ensuring high-quality software. The appropriate,

The six pillars of quality management systems for software

Figure 4. The main pillars of quality management system for software

© Porsche Consulting

relatively agile development process takes hardware develop-
ment into account. Existing product development processes
(PDP), and defect elimination processes are also considered.

An organizational structure capable of addressing the chal-
lenges inherent in software quality processes needs to
be individualized to an organization’s background, focus,
strategic outlook, and the like. Guidelines like ISO90003,
ISO15504, ISO25000, and other IEEE-regulations play a
decisive role in customer acceptance but also in compliance
to regulations. A successful quality management system for
software needs to address specific software characteris-
tics—such as approaches to software testing; modular, plat-
form-based architecture; and a product’s ability to receive
updates over-the-air. A quality management system should
undergo continuous improvement throughout its applica-
tion in development projects.

Ke
y t

o
qu

al
ity

as

su
ra

nc
e

Pa
rt

ic
ul

ar
ly

su
ite

d
to

Waterfall model

Returning to
previous step(s)
if realized quality

level does not meet
requirements

Projects in which
most requirements

are known and
few changes are

expected

Spiral model

Cyclical reviews of
incrementally im-
proved prototypes

Projects that focus
on risk and

have incomplete
requirements

V-model

Adjusting require-
ments and design
aspects based on

test results

Projects with special
focus on software

and hardware
integration

Rational unified process

Recurring tests, the
use of guidelines,

templates, reports,
and checkpoints

Projects that are
driven by use

cases and focus on
complete software

systems

Agile

Frequent checks,
close team inter-

action, flexible
organization

Projects that require
flexibility and

transparency with
a minimum amount

of time

 Quality 06

Customer demands and fulfillment
Another important step is determining the product’s advan-
tages with a particular focus on the combination of software
and hardware, which should then be compared to customer
needs and expectations. This requires knowledge about the
product’s suitability to meet the required functions. Develop-
ing a suitable communication concept, creating prototypes,
and learning from case studies all contribute to making the
product a tangible experience for the customer. Such activ-
ities aim to:

Software quality process
Quality in software development is ensured when guiding
structures are defined and systematically followed for the fol-
lowing three levers.

There are several generic software development models with
different characteristics and ways of ensuring quality; each is
particularly suited to a certain type of project (figure 5).

 �Increase the accuracy of cost and time estimates
 �Eliminate costly changes in later phases of development
 �Reduce development efforts and task duplication
 �Improve communication with stakeholders
 �Document details for future reference

01 �Development process: a tailored approach supports quali-
ty in the software development process.

02 �Interfaces: quality is supported by defining interfaces in
the development of software and hardware.

03 �Debugging: a systematic defect elimination process en-
sures the required and desired quality of the final software.

Figure 5. Alternative software development models with different characteristics

© Porsche Consulting

Quick facts

• �Sequential path to software design
with increasing detail

• �Agile approach to designing and
verifying code incrementally

• �Sequential path to design verifi-
cation by testing with increasingly
broad scope

• �Recursion loops at various integra-
tion levels may require updating
software backlog

• �Can be extended to integrate hard-
ware by parallel approach

Analysis of system
requirements

High level of
architecture & design

Low level of
architecture & design

System
integration testing

System testing

Acceptance testing

Recursion
loop 3

Recursion
loop 2

Classical design approach

Incremental design, SCRUM

e.g., SRUM

Inc
re

men
ta

l v
er

ific
at

ion

Recursion
loop 1

Outsourced and/or developed
in incremental loops (e.g., using
SCRUM approach)

Component design

Coding

Code

Sprint

Scrum

Unit testing

Component testing

Verification

 Quality 07

The development models that most frequently combine these
three levers are the V-model and the agile approach. The
V-model is characterized by a sequential path of designing
software followed by an equally sequential route to verifica-
tion by testing the design. Quality is ensured by adjusting re-
quirements and design characteristics based on test results.

These approaches can be combined with each other and,
when tailored to a development project, may result in an
appropriate hybrid model. The tailored approach is char-
acterized by a hybridized methodology one could call the

Figure 6. The individualized hybrid between the common V-model and the agile approach

© Porsche Consulting

In the agile approach, quality is ensured by continual checks
and interaction with the voice of the customer. A software
backlog documents all the requirements that may evolve over
time. Several sprints are realized by self-organized scrum
teams who maximize the development project’s flexibility to
react to changes.

“V-scrum fall” (figure 6). It allows teams to combine agile
practices like scrum with elements from the V- or waterfall
model and tailor them to a specific development project.

Specialization
Degree to which specialized activities
are spread throughout the company

Struructural dimension Company characteristics

low high

highlow

unstructured

Centralized
decisionmaking

Decentralized
decisionmaking

structuredCoordination
Need for structuring measures

Configuration
Visible structure of the company

Delegation
Distribution of decision-making powers

Formalization
Degree of fixed rules, procedures, etc.

Organizational
Structure

Divisional Matrix Holacracy

Centralized quality organization

• Focuses on functional specialization
• Similar or related activities are grouped together

• Focuses on project-specific requirements
• Activities are flexible to support project goals

Decentralized quality organization

Functional

 Quality 08

Organizational quality structure
In the context of a quality management system for software,
a company-specific organizational structure is defined by five
structural dimensions (figure 7). A six-step approach helps
determine the most suitable organizational structure.

Step 01 | Requirements and target states
The requirements of and interfaces for customers must be
known or defined, and once established, the company goals
can be set and incorporated into the organizational design. It
is also important to consider the requirements of the com-
pany as well as its employees. The requirements and target
states provide information about how formalized the quality
structure should be.

Step 02 | Process archeology
When (re)designing an organizational structure, it is neces-
sary to analyze existing processes and work out the struc-
tures implicitly contained therein. Analysis criteria should
include the complexity and repetition frequency of the pro-
cesses themselves. They provide information about the de-
gree of specialization and the possibility of making decisions
in a centralized or decentralized manner.

Step 03 | Task synthesis
The external appearance of the organization (configuration)
is defined by the logical content and factual combination of

Step 04 | Responsibility definition
The responsibilities and competences of each organizational
unit must be determined, which helps specify the organiza-
tional structure.

Step 05 | Interface definition
The interfaces between the organizational units are defined
according to the process archeology and the preliminary or-
ganizational structure. The interface definition also helps in-
crease the organizational structure’s degree of detail.

Step 06 | Organization structure
The final step is rearranging the organization based on the tar-
get state and steering the processes to implement the change.
Employee qualification, leadership, and corporate culture in
particular play an important role in reorganization. These as-
pects need to be taken into account comprehensively.

The complex interplay between all of these steps and structur-
al dimensions calls for an organizational design that is tailored
to the individual organization. Benchmarks may help to vali-
date a certain set-up.

Figure 7. Five structural dimensions to consider when developing an organizational quality structure

© Porsche Consulting

activities resulting from process archeology and the activities’
assignment to groups or teams. The organizational structure
manifests itself in a company’s organizational chart.

01

Monitor the integration, deployment, release, and delivery

Improve the efficiency of detection

Identify opportunities to prevent defects

Focus on a comprehensive view of business risk

Provide a workflow for prioritizing fixes and quality
improvements by preventing recurrence

Refine the process continuously

Fix bugs/defects

Manage the release into the next stage of release cycle

05

02

06

03

07

04

08

 Quality 09

Guidelines
Within the framework of a quality management system for
software, guidelines are understood as all measures that
serve to document the development process in addition to
mandatory guidelines for the software development process
itself. The documentation is divided into the four dimen-
sions of process, project, system, and quality. The right mix
of methods should be tailored to business needs and should
include as few system interfaces as possible. An IT-supported
document management system is especially advisable for se-
curing documentation of project results. Change and release
management can be supported equally well by a suitable IT
tool, however, as can software testing and life-cycle manage-
ment. Software testing can be accelerated by using intelli-
gent automation and smart analytics.

Continuous improvement in a systemic context
Continuous improvement of the software quality is based on a
systematic and recurring approach (figure 8). These improve-
ments aid in enhancing value for the customer. The tracking
of software changes and the application of new software
functionalities are as important as efficient error detection.
Preventive measures should be deduced in order to avoid
mistakes from the outset. A comprehensive view achieved by
evaluation and prioritization is advisable.

Software characteristics and software architecture
The complete definition of all relevant software properties
forms the basis for ensuring that all desired functionalities
of the software are available and can be experienced. The re-
quirement-based description of the software’s characteristics
is particularly relevant, since the early determination is crucial

Figure 8. Aspects for continuously improving software quality

© Porsche Consulting

for a functional design of the software architecture. The soft-
ware architecture has a significant impact on the functionality
of the software (e.g., access or startup speed). The most suit-
able software architecture can only be selected if the most
prevalent requirements for the software are defined. Software
is developed in modules which build on each other much like
building blocks. These blocks may need to be complemented
to address the desired functions. In this way, software contin-
uously evolves. Using existing software modules with proven
quality enhances efficiency and in turn the quality of software
development.

01

05

Mind-set

Modularity

Holistic mind-set
about quality

Building blocks

02

06

Reactivity

Learning from
customer response

Learning, implementing,
learning

Customer use

04

08

Information
network

Training,
development

Using
available data

Taking challenges

03

07

Flexible
organization

Cybersecurity &
data security

Implementing
changes

Protecting data

 Quality 10

Measures balancing effort and benefit should be anchored in
the improvement process. As a result, corrective measures
and quality improvements are initiated preventively. The
tracking of the implementation of measures, their effective-
ness, and the inclusion of lessons learned form the basis of
the framework for quality management of software. Eight
success factors have been identified that particularly contrib-
ute to continuous improvement (figure 9).

Figure 9. Success factors fostering continuous improvement

© Porsche Consulting

Implementing learned lessons and anchoring them in
the organzation is a transparent pursuit of potential
and the realization of measures and goals derived
from such a pursuit. Successfully implementing
measures enables the realization of strategies.

CodingValue
added

30%

Waste
70%

Wrong product/specification

Creative work

Lack of standardization

Unnecessary testing

Reinventing the wheel

Lack of automation

Organizational issues

Present
state

Ideal
state

29%
20%

13%

18%

9%

12%

6%
8%

19%

10%

12%

15%

8%

11%

4%6%

 Quality 11

The return on investment in quality management for soft-
ware is not always quantifiable, but this is also true for oth-
er quality measures. While costs linked to certain quality
improvement measures can be quantified, their benefits
often cannot. For example, averted damage can hardly be
monetized and the costs of nonconformity to regulations

Figure 10. �The share of activities during software development that add value can be increased significantly

(estimation by Porsche Consulting based on survey conducted in 2017)

© Porsche Consulting

Business case

only anticipated. The business case of a quality manage-
ment system for software is built on the observation that
about 70 percent of software development does not add
value (Figure 10). Only 30 percent of activities add value
through coding or creative work that focuses on realizing
the desired functionality.

Identifying the root cause of software errors becomes more
difficult as networking increases among systems and their
software. The combination of software and hardware ampli-
fies this difficulty and emphasizes the necessity and poten-

tial of a systematic approach to software quality. The quality
management system for software as introduced is able to
address the specific needs and challenges in software quality
management that an organization faces.

Quality 12

Porsche Consulting
Headquartered in Bietigheim-Bissingen, Porsche Consulting GmbH is a subsidiary of the Stuttgart-based sports car manufac-
turer Dr. Ing. h.c. F. Porsche AG. Founded in 1994, the company currently employs 600 people and is among the top 10 manage-
ment consultancies in Germany (Lünendonk analysis). Active around the globe, it has offi ces in Stuttgart, Hamburg, Munich and
Berlin as well as in Milan, São Paulo, Atlanta, Belmont (Silicon Valley) and Shanghai. Following the principle of “Strategic Vision,
Smart Implementation,” its experts support companies worldwide primarily with their major transformations, the improvement
of their performance, and enhancement of their innovative capacity. Their clients are large corporations and medium-sized
companies in the automotive, aviation and aerospace industries, as well as industrial goods. Other clients originate from the
fi nancial services, consumer goods, retail, and construction sectors.

Strategic Vision. Smart Implementation.
As a leading consultancy for putting strategies into practice, we have a clear mission: we generate competitive advantage on
the basis of measurable results. We think strategically and act pragmatically. We always focus on people—out of principle. This
is because success comes from working together with our clients and their employees. We can only reach our aim if we trigger
enthusiasm for necessary changes in everyone involved.

Authors

Oliver
Stahl
Associate Partner

Contact
 +49 170 911 4330

Michael
Bartholdt
Senior Berater

Sebastian
Roth
Senior Berater

Dr. Dominik
Rößle
Senior Berater

Further reading

Auswirkungen der
Elektrifi zierung
des Automobils
auf den deutschen
Maschinenbau

The Future of
Strategy Work

Business Process
Management
Reloaded

Future Farming How Digital is
the Agricultural
Equipment Sector

High Performance Transformation

 The Future of Strategy Work
From Projects to Real-Time
Development and Deployment

High Performance Transformation

 Business Process Management
 Reloaded

Eight levers to turn process management into a
competitive advantage of high-performance enterprises

High Performance Enterprise

Future Farming
About the Need for Game Changers
in the Agricultural Industry

Agricultural Industry

High Performance TransformationAgricultural Industry

 How Digital is the Agricultural
Equipment Sector?
The status of digitalization within the top agricultural players

Porsche Consulting
Stuttgart | Hamburg | Munich | Berlin | Milan | São Paulo | Atlanta | Belmont | Shanghai

www.porsche-consulting.com © Porsche Consulting 2019

