
Development &
Technology

Three pitfalls in
software-driven
transformation
How to tackle the growing
challenges

02 Three levels in software-driven transformation

INSIGHTS

//02
Software-based product solutions have to be approached
with a holistic mindset: at the strategic level of software
capabilities, at the tactical level of product delivery, and at
the operational level of software development.

//03
Strategic collaborations with software and technology pioneers are
crucial to swiftly build up necessary capabilities. The key to utilizing

these capabilities is a decoupling of hardware and software in the
product as well as in the product development process.

New automotive players and mounting digitalization are
leading to an increase in the product complexity and

pace of change in automotive products, forcing the
traditional automotive industry to follow suit.

//01

03 Three levels in software-driven transformation

Understanding software-driven transformation
Software transformation is the answer to rising product complexity

Digital transformation in the automotive sector is accel-
erating and is increasingly tying up the capacities of tra-
ditional vehicle manufacturers. This acceleration is gener-
ated by the reciprocal reinforcement of market-push and
market-pull factors, among other influences. Together,
these factors result in a disproportionate rise in product
complexity, especially in the digital sector.1,2

Market-push and market-pull factors reinforce digitalization
in the automotive sector
The main market-push factors that are currently tying up the
capacities of traditional vehicle manufacturers are the elec-
trification of the powertrain, the digitalization of the vehicle,
and automated driving. These themes are the focus of intense
activity, and are being driven not least by new players on the
market such as Tesla, Google, and Apple. At the same time,

the automotive industry continues to be challenged by the
digital transformation of society as a market-pull factor. The
digitization of everyday life, for example through the use of
digital services and platforms, is gaining ground in all areas
of life and thus also heightening customers’ demands on their
mobility, the associated vehicles, and the infrastructure.3,4

Increased product complexity and pace of change
The number of functions per vehicle has been increasing
steadily since the 1970s. The increase in functions has been
accompanied by an increase in the number of control units
to perform the functions. Since the mid-2000s, the number
of functions per control unit has been increasing at a faster
rate than the number of functions, resulting in a trend toward
consolidation or even a decline in the number of control units.

Fig. 1. Increasing number of functions and control units per vehicle5

© Porsche Consulting1970

Quantity Number of functions
per vehicle

Number of control units
per vehicle

Number of functions per
control unit

1980 1990 2000 2010 2020

04 Three levels in software-driven transformation

The new functions are generally highly interconnected and
must be integrated in the vehicle and in the surrounding sys-
tems. This results in higher complexity of the product, vehicle,
and peripheral systems. The complexity of the products on
the requirements side is primarily answered by new software
functions, which also increases the complexity of the network
and the software architecture.6

“[The] increase [in product
complexity] is not only due to

the fact that there are more
and more software functions

in vehicles, but also to the
simultaneously increasing
concentration of functions

on fewer and fewer electronic
control units.”7

In addition to increasing product complexity, the digitaliza-
tion-related pace of change in the products is also on the
rise. Flexible IT solutions and software services, for example
in the consumer goods industry, are changing at a signifi-
cantly higher rate than the automotive industry’s mostly
hardware-based solutions, with their multi-year develop-
ment cycles.8,9

The consumer goods industry and the digital pioneers in the
automotive industry, such as Tesla and NIO, are also fueling
increased expectations among automotive customers with
regard to the car as a product. The vehicle software and its
functions should always be up to date and errors must be
rectified without delay.10

Digitalization challenges the conventional
automotive industry
The transformation that digitalization is bringing about
is presenting traditional vehicle manufacturers with new
challenges. Among other indicators, this becomes visible in
the statistics of recent years:

	` Forecasts predict that software development costs will in-
crease by more than 40 percent between 2022 and 2030.11

	` Approximately 60 percent of vehicle recalls can be attribut-	
	 ed to the increased complexity of the products, carryover 	
	 parts strategies and the speed of development.12

	` Between 2011 and 2019, the number of recalls in the Ger-	
	 man automotive sector more than tripled to record levels.13

The need for conventional vehicle manufacturers to dig-
italize their organizations and products is thus clearly evi-
dent. Topics such as the aforementioned increase in com-
plexity, the increased pace of change in the product, and the
simultaneous need to address challenges in the develop-
ment and provision of hardware and software require a high
level of attention in order to remain competitive. Without
the organizational, procedural, and operational focus on the
provision and mastery of software-driven product solutions,

traditional vehicle manufacturers will be left behind in the
digital realm by the likes of new automotive players such as
Tesla and NIO.

Change on all levels of the organization
To implement the ongoing software-driven transformation, the
necessary changes must be embedded in an overall strategy.
The levers for these changes are forcing traditional vehicle
manufacturers to take action on three different organizational
levels:

	` At the strategic level of the organization, the capabilities
	 that a vehicle manufacturer must have as part of the soft-
	 ware-driven transformation need to be defined. Both the
	 objectives and the necessary capabilities are derived from
	 the digitalization strategy for the organization and the
	 different approaches can be taken to make this capi-
	 bility available and usable for the organization: acquisitions
	 of companies, entering into collaborations with partners,
	 and open-source solutions are oft-cited approaches
	 here. The chapter “Debugging the organization” provides in-
	 formation on how traditional vehicle manufacturers can
	 identify and make available the necessary capabilities to
	 maintain their competitiveness.

	` At the tactical level, the challenge is to address the in-
creased pace of delivery. Resolutely decoupling processes
along the different delivery paces enables increased flexi-
bility in product deployment. A precondition for harness-
ing decoupled processes taking place at different speeds
is a decoupled product architecture geared to the delivery
pace. The resulting interfaces must be managed through a

05 Three levels in software-driven transformation

dedicated interface management. The chapter “Unleash the
product change” addresses the necessary changes in the
product and process and presents recommendations for
traditional vehicle manufacturers.
	` At the operational level, software development processes
form the procedural backbone of a software-driven orga-
nization. In addition to creating efficient software pipe-
lines, they also lay the groundwork for end-to-end com-
plexity management and a flexible and decoupled product

architecture. The strict derivation of the product architec-
ture on the basis of strategic corporate concepts as well
as market and customer requirements are the key factors
for the implementation of a software-driven transformation
at the higher organizational levels. The chapter “Hacking
complexity in software product creation” provides valuable
information on the focus points to make complexity man-
ageable in automotive software development as well.

Debugging the organization
Collaborations offer an opportunity to quickly expand the capability portfolio

Market-related push and pull factors are forcing traditional
automotive companies to acquire software-related capabil-
ities in order to meet the trends of electrification, digitaliza-
tion, and increased autonomy of vehicles and to remain com-
petitive. The shift to “software centricity” in the automotive
environment expands the target capabilities of the organiza-
tion. Software can only be developed successfully and inte-
grated into existing products and processes if its complexity
and connectedness in the overall product are understood and
mastered. However, barriers such as resource bottlenecks
and rising costs are making it increasingly difficult to build
such capabilities. More and more traditional companies in the
automotive industry are therefore turning to internal and ex-
ternal collaborations with partners in order to share comple-
mentary resources in terms of software know-how and capa-
bilities. Three success factors are relevant here: awareness of
the company’s capabilities, a willingness to proactively shape
and manage the transformation, and the decoupling of the
hardware and software process landscape.

Capabilities: First reflect, then act
Before entering into a collaboration model with other com-
panies, a dedicated analysis to identify core competencies
should be carried out. For example, the strengths of traditional
automobile manufacturers are often found in the conventional
areas of body, electrics, chassis, and powertrain as well as or-
ganizational, coordinative areas, which have been elaborated
through the modular assembly of vehicles and the manage-
ment of that process. Once the current core competencies are
known, they are compared with the corporate objective, the
corporate vision and the desired, strategic positioning. Com-
paring the targets with the actual situation makes it possible
to derive the skills and capabilities needed to achieve the tar-
gets that are not yet in place. Looking at traditional vehicle
manufacturers, software-related capabilities are often insuffi-
ciently developed. However, not all capabilities can be built up
independently and in a timely manner due to factors such as
investment risks and market barriers. To overcome these ob-
stacles, collaborations offer traditional companies the oppor-
tunity both to acquire capabilities and to gain deeper insights
into the market and technology from progressive technology
companies. This makes it possible to tap into market potential
more quickly and react to changes in technology. Compared
to building up these capabilities independently within the
company, this makes it possible to overcome the barriers to
acquiring operational and strategic software know-how and
dealing with resource scarcity more flexibly. Horizontal col-
laboration between traditional and technology companies is
therefore better suited to flexible capability development in

A competitive advan-
tage depends not on
the resources that
are controlled, but
on those that can be
accessed.

06 Three levels in software-driven transformation

the automotive environment than vertical integration of skills
via the supply of services or the acquisition of parts of com-
panies.

Organization: The best of both worlds
Collaboration models, both internally within an organization
and externally when two independent organizations work
together, pose specific transformational challenges. These
challenges arise from the prevailing circumstances of the
individual organizations and can be of a formal nature (e.g.,
incompatible process landscapes) or an informal nature (e.g.,
incompatible corporate cultures). Incompatibilities can occur,
for example, where traditional companies or business divi-
sions collaborate with progressive, agile companies or busi-
ness divisions, as it can currently be seen in many cases in the
automotive industry. To ensure that the potential of collabo-
ration can be exploited through mutual sharing of core com-
petencies and is not disrupted by formal and informal barri-
ers, organizational or project-based collaboration should be

coordinated centrally. This function can be implemented by
installing an integration management office (IMO). The IMO
acts as a control instrument that connects all activities relat-
ed to the transformation. The activities of the IMO are focused
primarily on creating overarching framework conditions, e.g.,
for the development of a common process landscape. In the
course of elaborating processes, factors such as the definition
of communication structures, conflict resolution procedures,
interface functions, and the exchange of information are con-
sidered. For informal structures, the IMO should have exper-
tise in the field of change management. Identifying change
drivers and activating management to support and represent
them are key factors in successfully bringing together two
collaboration partners and facilitate the implementation of
formal compatibilities. Located directly with management,
the IMO thus fulfills an overarching governance function. The
task of the IMO is to bring together and make accessible the
core competencies of both collaboration partners in the best
possible way in the context of both organizational worlds.

Fig. 2. The integration management office is the central control function for the optimal utilization of complementary capabilities

© Porsche Consulting

Coordinative competencies Technical competencies

INTEGRATION MANAGEMENT OFFICE

Traditional
player

Software
player

Core competencies outside
the software domain

Core competencies in the
software domain

"Despite the increasing dif-
ferentiation, individualization

and personalization of the
products, […] the demand for
shorter delivery times […] and
higher flexibility with regard
to product changes […] will

continue to rise.”15

07 Three levels in software-driven transformation

Processes: Starting over again
The combination of core competencies in the automotive and
software industries should lead to a software-oriented, hor-
izontal expansion of the range of capabilities for traditional
vehicle manufacturers. To achieve this, the process worlds of
two collaborating companies must be brought together. The
content of both process landscapes should be aligned for the
respective business units, while simultaneously decoupling
hardware and software-related processes. Aligning the con-
tent of the process landscape requires the coordination of
tasks, capabilities, and areas of responsibility for processes,
methods, and tools within both collaborating companies. The
decoupling of hardware and software processes promotes
flexibility in product deployment. To address the factor of
product complexity in the process design, e.g. in network
design in the overall vehicle system and the corresponding
requirements for hardware and software, the aim should be
to decouple their processes. In this context, support process-
es such as project management and configuration manage-
ment must be a particular focus for the joint process design.
They exert influence on the development processes and play
a guiding role. Only a holistic view of the process landscape
can enable the interaction of software and hardware devel-
opment.

In summary a transformation of a of traditional industrial
company in the automotive industry into a software-driven com-
pany requires an analysis of the company’s current strengths
and weaknesses. This should be used as a basis for comple-
menting and expanding the capability portfolio. Collabora-
tions offer a suitable form for the purpose. Central coordina-
tion of the transformation process should be provided in the
form of an integration management office. This ensures that
the processes are not only coordinated with each other, but
also integrated into a common process landscape in focus
areas. To accommodate the different development cycles for
hardware and software, the associated development process-
es should be abstracted from each other.

In addition to the strategic level, it is also important to ad-
dress the challenges of the increased delivery speed at the
tactical level. The following chapter presents recommenda-
tions for changes in product and process.

Unleashing the product change
Decoupling increases flexibility in product deployment

Software capabilities alone do not automatically yield the
desired benefits in the organic existing structures of automo-
tive companies. Adequate product and process architectures
are necessary to achieve flexibility and speed. The demand for
a high degree of flexibility and speed in product adaptation
combined with the increasing complexity of software-based
products poses a particular challenge to traditional vehicle
manufacturers. Product complexity is often addressed with
waterfall-type development sequences. Strictly hierarchical
product and process structures with coupled hardware and
software processes are generally an integral part of the com-
pany. At the same time, however, this coupling leads to low
responsiveness in terms of product deployment, compromi-
sing the ability to react to rapid changes in customer requi-
rements during product development and after the launch.14

08 Three levels in software-driven transformation

Coupling inhibits change flexibility
Increasing the agility of product development processes (e.g.,
via agile frameworks such as SAFe, or LeSS) in automotive
software development represents a valuable approach to in-
creasing responsiveness. The full potential of this approach
cannot be realized, however, if the product and process struc-
tures have internal coupling that inhibits flexible product de-
velopment and deployment of the products.16,17

Coupling in the product can occur, for example, if complex
functions are distributed over multiple software compo-
nents and are thus highly mutually dependent. In this case,
the adaptation of one function can result in changes to a high
number of software components at the same time and thus
necessitates major integration efforts.

Coupling in the process, like coupling in the product, in-
cludes, for example, the compulsory coupling of software re-
leases together with hardware releases in a shared cycle. The
separation of software and hardware releases is often inhibit-
ed due to waterfall-type processes, as there is no separation
of the processes, and thus no independent development and
integration, of the individual product components.18

01
Identify the blockers: analysis of coupling in the
product architecture

Dependencies in the product can be visualized and cate-
gorized by functional analysis methods such as sequence
analyses, activity diagrams, or state machines. Through this
process, instances of coupling are identified and can then be
dealt with.

02
Form follows function: product structure and
interfaces based on the product strategy

Coupling in the product can be eliminated through the modu-
larization of product components. The modules should be de-
signed as functionally independent of one another as possible
and with strictly managed interfaces in order to enable the
independent change, replacement, or omission of individual
modules. Design decisions should incorporate the required
pace of change for the modules, i.e., a “pace-layered archi-
tecture,” in order to achieve the highest possible degree of
change flexibility in relation to market and customer require-
ments.

03
The dual operating model: pace-dependent devel-
opment and application processes

Starting from the independent modules of the product, in a
further step it is possible to identify the linkages in the pro-
cess that impede the independent development and deploy-
ment of the architecturally independent modules. For each
module, the development and application process is analyzed
and the interdependencies identified. In order to resolve these
dependencies and to implement a pace-dependent process
architecture, the processes can be separated and then, for
example, reunited in a targeted manner via fixed synchroniza-
tion points. The synchronization points re-link the now sepa-
rated cycles of slower and faster process components only at
planned points in time. At the same time, a decoupling of the
processes is achieved outside the synchronization points, in-
creasing the deployment flexibility of the faster process com-
ponents. The independence of slower and faster development
and application processes is at the core of the sought-after
dual-operating model.

Without decoupling within the product and process, it is not
a single product component that determines the develop-
ment time, but rather the entirety of the hardware and soft-
ware components affected by the changes. The component
with the longest development time in the overall product
thus also determines the deployment speed for new product
functions and product changes. This makes short-cycle de-
ployment of rapidly variable product components and func-
tions impossible.

The three steps of decoupling for flexible deployment of
functions
Coupling in the product or process components of traditional
vehicle manufacturers often developed organically over time
and can be resolved through restructuring of the product
architecture and the development processes over the entire
product life cycle of the vehicles. This approach enables vehi-
cle manufacturers to make full use of the advantages of rap-
idly adaptable software solutions:

Cross-series portfolio

Cross-series
agile
product
creation

Continuous function development

SW
HW

Platform development

Carry over of current
platform and function

release

Vehicle-specific soft-
ware feature structure

Integration of customer-
ready functions

Start of
production

Delivery of new
product substance

and bug fixes

Vehicle
product
development
process

11010
10011

11010
10011

1101010011
11010
10011

11010
10011

1101010011
11010
10011

11010
10011

1101010011
11010
10011

11010
10011

1101010011

In summary, the elimination of coupling in the product and
process makes it possible to deploy product components
that are not dependent on the release cycle of slower pro-
duct components, but rather on the pace of delivery of indi-
vidual product components. Short- and long-cycle product
components can thus be independently adapted, integrated,
and released. The resulting dual-operating model increases
change flexibility and responsiveness to market and custo-
mer needs. The basis for achieving change flexibility is a

strategic modularization of the product structure as well as
strict interface management. The adaptation and mastery of
the complex product structure and its interfaces require clear
determination of the requirements from the overall product
to the software level as well as comprehensive management
of the interfaces. Approaches to this are discussed in more
detail in the chapter “Hacking complexity in software product
creation.”

09 Three levels in software-driven transformation

Fig. 3. The dual-operating model combines short- and long-cycle development and deployment processes

© Porsche Consulting

Hacking complexity in software product creation
Focus on software product creation

As seen in the previous chapter “Unleash the product chan-
ge,” decoupling slow and fast paced product components
enables a flexible and rapid reaction to change by making
use of a dual-operating model. The software product creati-
on process contributes to the flexibility of reacting to custo-
mer and market needs as well and must also be optimized
to deal with the rapidly growing complexity of software in
the automotive industry. Ambitious customer expectations

and flexibly deployable software, for example, can drive the
software complexity higher. An advanced process design can
help to structure and control the complexity in an organization
becoming more software-driven.

SOLUTIONS TO ADDRESS
THE COMPLEXITY

Reactive and dynamic
software development is
necessary to respond to

the challenges in the
organization creating

software products.

10 Three levels in software-driven transformation

Software product creation—the complexity challenge
In an ever more digital world, the improvement of software ca-
pabilities in consumer electronics leads automotive custom-
ers to have more ambitious demands on automotive software
as discussed in the introductory chapter. This, combined with
the increasing popularity of mobility solutions over ownership
models, places further expectations on the software feature
and function capabilities. This increase in capability drives
an increase in the number and complexity of requirements,
which the development must satisfy. A linear increase in re-
quirements logically forces the specification to contain expo-
nentially more interdependencies between requirements.19

In addition to the increasing complexity in requirements
specification, in practice, the journey from customer need
to an accepted technical requirement is significantly longer
than desired. Requirements and software expectations also
change during the development cycle due to, for example, a
disruptive new technology. The implementation of require-
ments and software changes especially during the develop-
ment cycle can cause disorder in the rollout of features and
functions, due to complex dependencies in the software. The
rapid deployment of software and software changes in combi-
nation with a more complex software product poses a conflict
that must be mitigated to successfully develop, test, and de-
liver the software product customers want.

Furthermore, in the pursuit of faster, more agile, and more
flexible code development and subsequent deployment, there
is an expectation that all software variants must be easily
and continuously deployed across a variety of environments.
These environments include not only the series hardware
(ECU) platforms but also virtual testing simulation platforms
for speeding up development and integration. This multitude
of hardware and software platforms forces software to be
platform-independent and modular. This type of implemen-
tation presents a challenge, especially when incorporating
legacy code with strong hardware dependencies. The incor-
poration of legacy code cannot always be avoided if the code
performs a central and time-sensitive function, or if it cannot
be replaced without significant effort.

Requirements mastery
The successful definition of the future vehicle software must
combine customer centricity and a requirements conver-
gence process. This implies focusing technical requirements
on customer needs and converging them with developers and

suppliers to an achievable specification. This collaborative
requirements convergence process structures the journey
to an aligned software specification that can be more easily
accepted into the further development. The convergence of
requirements to manage the complexity can be broken into
four steps:

	` Restrict the scope: Define technical requirements in col-
laboration with both customer need experts and software
development specialists to distill requirements to the core
of the customer need while remaining obtainable.

	` Cluster functionalities: Solve target conflicts in the require-
ments specification by clustering functionalities and benefit
from synergies in software stacks rather than function silos.

	` Stagger the feature rollout: Work with software develop-
ment to plan the feature rollout early and develop an overar-
ching timeline for software product deployment to projects.

	` Plan for software variants: Focus initially on software devel-
opment critical to building the base of the software archi-
tecture (cross variant) to allow for future variant-dependent
software development on a standardized interface base.

The combination of customer centricity and requirements
convergence manages the complexity by primarily focusing
development on customer needs and identifying and aligning
any compromises in requirements early in the development.

11 Three levels in software-driven transformation

Fig. 4. Steps to mitigate complexity on the left half of the development V-model

© Porsche Consulting

CONSOLIDATION OF
CUSTOMER NEEDS

01REQUIREMENTS
DERIVATION

Cluster functionalities
Solve target conflicts within requirements; focus on
clustered software stacks and not individual functions

Stagger feature rollout
Plan feature and functional rollout to understand the
overarching timeline

Plan for software variants
Focus initially on requirements that enable future
feature development

Restrict the scope
Define the realistic functional scope and determine
the customer value of each requirement

02

REQUIREMENTS
CONVERGENCE 03

ARCHITECTURE
DERIVATION

04

… Requirements convergence with the focus
on complexity management in 4 steps:

Control the environment
The modelling of architecture structures must incorporate
a platform strategy and strict interface definition and man-
agement. The platform strategy should clearly define all en-
vironments, virtual and real, in which the software products
are to be deployed. The architecture strategy shall incorpo-
rate parts of integration management early in the software
product creation process, also defining when software can be
deployed in each environment. This allows agile teams to plan
meaningful product increments with demonstrable outcomes
per increment. The platform strategy shall give transparency
when software environments are expected to be available to
developers and coordinate the platform development.

Deployment to a variety of environments is also made sig-
nificantly easier by defining clear interfaces in the software
architecture, as well as ensuring that these defined interfac-
es are respected. As mentioned, legacy code with hardware
dependencies can pose a significant risk to the modularity of
code. The interface definition and management thereof work

in combination with the platform strategy to define any risks
due to legacy or hardware-dependent software early in the
development. A platform strategy and interface management
incorporated into the architecture process can significant-
ly decrease integration complexity later in the development
process.

12 Three levels in software-driven transformation

Fig. 5. Extract of architecture strategy and main benefits

© Porsche Consulting

ARCHITECTURE
STRATEGY

PLATFORM STRATEGY

Define more
meaningful product

increments

Demonstrate
software

maturity more
consistently

Identify risks
in legacy code

components early

STRICT INTERFACE MANAGEMENT

In summary, due to the increasing complexity in software
product creation, complexity management techniques are
required in the software product creation process. These
techniques have the best possibility of making a noticeable
reduction in complexity if set as early as possible in the de-
velopment. It is for this reason that the suggestions menti-
oned in this chapter aim at addressing the requirements and

architecture phases of the development cycle. Comprehen-
sive requirements convergence built into the requirements
management process, as well as a clear platform strategy
and strict interface management built into the architecture
process can help to mitigate complexity before it becomes
unmanageable.

Ready to transform
New players in the automotive market such as Tesla, Google,
and Apple are driving digital market-push effects while the
ever-expanding digitalization of everyday life is creating a
market-pull effect. This is heightening the pressure on tradi-
tional vehicle manufacturers to keep pace with the new com-
petition in the field of digitalization. Rising customer require-
ments lead to rising product complexity, while at the same
time accelerating the speed of innovation and change in prod-
ucts on the automotive market. The requisite organizational
and procedural changes must be analyzed and implemented
on three levels:

Vehicle manufacturers must first carry out a comparison be-
tween the overall digitalization strategy and the necessary
skills of the organization. Any gaps in the capability portfolio
can be filled as needed through the development or restruc-
turing of in-house resources, although the current shortage
of skilled workers make this more difficult. A quick and flexi-
ble alternative to building up new capabilities is collaboration
with competent partners with software expertise. The instal-
lation of an integration management office, which controls
the collaboration and the process unification, serves to inte-
grate the newly acquired competences.

13 Three levels in software-driven transformation

In the next step, the available software capabilities must be
used at the tactical level for decoupling hardware and soft-
ware in the product and process in order to harness the ad-
vantages of a flexible software product and to accelerate the
rate of delivery for the product. The key to this is analyzing the
coupling both in the product architecture and in the product
development process. This coupling can be specifically elim-
inated in individual product components that are intended to
be rapidly adaptable.

Managing the individual product components in the devel-
opment and application process presents a special challenge
in the context of increased product complexity and pace of
delivery. One of the keys to successful transformation for
vehicle manufacturers is therefore consistent attention to
customer requirements throughout the product architecture
and the software based on a platform strategy, a controlled
convergence process for the requirements as well as dedi-
cated interface management between the individual product
components.

 Three levels in software-driven transformation

In Brief

Horizontal collaborations enable flexible acquisition of
software-related capabilities. An integration management
office can thereby manage barriers that arise and coordi-
nate process integration for both collaboration partners in
addition to change management-relevant aspects.

Significantly increasing the deployment flexibility and pace
of change for a product requires a dedicated decoupling
of rapidly changeable product components. The process
architecture, for example in development and application
processes, follows the product architecture in order to
make the flexibility operationally usable.

Complexity in software product creation is growing due to
a multitude of factors. A focus on converging requirements
to form realistic and achievable specifications as well as a
platform strategy and interface management can restrict
the complexity early.

01

02

03

14

15 Three levels in software-driven transformation

Porsche Consulting
Porsche Consulting GmbH is a leading German strategy and operations consultancy and employs 800 people worldwide. The
company is a subsidiary of the sports car manufacturer Dr. Ing. h.c. F. Porsche AG, Stuttgart. Porsche Consulting has offices
in Stuttgart, Hamburg, Munich, Berlin, Frankfurt am Main, Milan, Paris, São Paulo, Shanghai, Beijing, Atlanta, and Palo Alto.
Following the principle of “Strategic vision. Smart implementation,” its consultants advise industry leaders on strategy, innova-
tion, performance improvement, and sustainability. Porsche Consulting’s network of 12 offices worldwide serves clients in the
mobility, industrial goods, life sciences, consumer goods, and financial services sector.

Strategic Vision. Smart Implementation.
As a leading consultancy for putting strategies into practice, we have a clear mission: we generate competitive advantage on
the basis of measurable results. We think strategically and act pragmatically. We always focus on people—out of principle. This
is because success comes from working together with our clients and their employees. We can only reach our aim if we trigger
enthusiasm for necessary changes in everyone involved.

Contact

Authors

Dr. Rodrigo
Biurrun
Partner

Fit for
Automotive

Matthias
Brandt
Manager

Managing
Software Quality

Dr. Rodrigo Biurrun

Ines
Burkhardtsmayer
Senior Consultant

Stuart
Church
Senior Consultant

Agile in a
Complex World

 +49 170 911-5454
 rodrigo.biurrun@porsche-consulting.com

Further reading

https://www.porsche-consulting.com/de/medien/publikationen/detail/white-paper-quality-management-system-for-software/
https://www.porsche-consulting.com/de/medien/publikationen/detail/white-paper-fit-for-automotive/
https://www.porsche-consulting.com/de/medien/publikationen/detail/strategy-paper-agile-organisationen/

16 Three levels in software-driven transformation

Appendix

(1) Schäuffele (2016). Automotive Software Engineering. Wiesbaden: Springer Fachmedien

(2) Jooß (2022, 04). Komplexität von Softwaretests in der Fahrwerksentwicklung. ATZ - Automobiltechnische Zeitschrift

(3) Schäfer (2022). Moderne Fahrwerktechnik auf der chassis.tech plus. Fahrwerk

(4) Hill (2020, 10). Corona als Treiber der Digitalisierung. Innovative Verwaltung

(5) Schäuffele (2016). Automotive Software Engineering. Wiesbaden: Springer Fachmedien

(6) Jooß (2022, 04). Komplexität von Softwaretests in der Fahrwerksentwicklung. ATZ - Automobiltechnische Zeitschrift

(7) Schäuffele (2016). Automotive Software Engineering. Wiesbaden: Springer Fachmedien

(8) Maier-Borst (2022). Hebel und Handlungsfelder für die digitale Transformation in der Automobilindustrie am Beispiel der
Porsche AG. In T. S. Gerhard Oswald, Digitale Transformation - Fallbeispiele und Branchenanalysen. Wiesbaden: Springer Fach-
medien

(9) Bosler (2021). Das Digitale Dominante Servicedesign – Implikationen für digitale Innovationen im vernetzten Automo-
bil. In P. D. Proff, Making Connected Mobility Work. Wiesbaden: Springer Fachmedien

(10) Winter (2022). Smart Data, Smart Products, Smart Services – Innovationen und neue Leistungsversprechen in Industrie,
Dienstleistung und Handel. In P. D. Prof.Dr.Dr.h.c.mult. Manfred Bruhn, Smart Services. Wiesbaden: Springer Fachmedien

(11) statista (2022, 08 31). Retrieved from statista: https://de.statista.com/statistik/daten/studie/1321740/umfrage/prog-
nose-zu-software-ausgaben-von-automobilherstellern/

(12) Bratzel (2018). Die Rückruf-Trends der globalen Automobilhersteller im Jahr 2017 - Referenzmarkt USA. Bergisch Glad-
bach: Center of Automotive Management (CAM)

(13) statista (2022, 08 30). Retrieved from https://de.statista.com/statistik/daten/studie/1254342/umfrage/rueckrufak-
tionen-in-der-automobilindustrie-in-deutschland/

(14) Kitsios (2021). Der Digital (3D-) Master-Prozess. Springer

(15) Kern (2021). Organisation, Planung und Steuerung der Montage im Automobilbau. Wiesbaden: Springer Fachmedien
Wiesbaden

(16) eveling (2022). IT-Architektur für die Silicon Economy. In P. D. Prof. Dr. Dr. h. c. Michael ten Hompel, Silicon Economy.
Berlin Heidelberg: Springer

References

17 Three levels in software-driven transformation

(17) Hanschke (2021). Lösungsbausteine der Digitalisierung. In I. Hanschke, Digitaler Wandel – lean & systematisch.
Wiesbaden: Springer Fachmedien

(18) Bratzel (2018). Die Rückruf-Trends der globalen Automobilhersteller im Jahr 2017 - Referenzmarkt USA. Bergisch
Gladbach: Center of Automotive Management (CAM).

(19) Krauter (2022). Certificate-based Safety Concept for Future Dynamic Automotive Electric/Electronic Architectures.
In P. D.-C. Prof. Dr. Michael Bargende, 22. Internationales Stuttgarter Symposium. Stuttgart, Germany : Springer Fachme-
dien Wiesbaden

Porsche Consulting
Stuttgart | Hamburg | Munich | Berlin | Frankfurt | Milan | Paris | São Paulo | Atlanta | Palo Alto | Shanghai | Beijing

www.porsche-consulting.com © Porsche Consulting 2023

